Struct tauri::async_runtime::Mutex
pub struct Mutex<T> where
T: ?Sized, { /* fields omitted */ }
Expand description
An asynchronous Mutex
-like type.
This type acts similarly to std::sync::Mutex
, with two major differences: lock
is an async method so does not block, and the lock guard is designed to be held across .await
points.
#
Which kind of mutex should you use?Contrary to popular belief, it is ok and often preferred to use the ordinary Mutex
from the standard library in asynchronous code.
The feature that the async mutex offers over the blocking mutex is the ability to keep it locked across an .await
point. This makes the async mutex more expensive than the blocking mutex, so the blocking mutex should be preferred in the cases where it can be used. The primary use case for the async mutex is to provide shared mutable access to IO resources such as a database connection. If the value behind the mutex is just data, it’s usually appropriate to use a blocking mutex such as the one in the standard library or parking_lot
.
Note that, although the compiler will not prevent the std Mutex
from holding its guard across .await
points in situations where the task is not movable between threads, this virtually never leads to correct concurrent code in practice as it can easily lead to deadlocks.
A common pattern is to wrap the Arc<Mutex<...>>
in a struct that provides non-async methods for performing operations on the data within, and only lock the mutex inside these methods. The mini-redis example provides an illustration of this pattern.
Additionally, when you do want shared access to an IO resource, it is often better to spawn a task to manage the IO resource, and to use message passing to communicate with that task.
#
Examples:use tokio::sync::Mutex;
use std::sync::Arc;
#[tokio::main]
async fn main() {
let data1 = Arc::new(Mutex::new(0));
let data2 = Arc::clone(&data1);
tokio::spawn(async move {
let mut lock = data2.lock().await;
*lock += 1;
});
let mut lock = data1.lock().await;
*lock += 1;
}
use tokio::sync::Mutex;
use std::sync::Arc;
#[tokio::main]
async fn main() {
let count = Arc::new(Mutex::new(0));
for i in 0..5 {
let my_count = Arc::clone(&count);
tokio::spawn(async move {
for j in 0..10 {
let mut lock = my_count.lock().await;
*lock += 1;
println!("{} {} {}", i, j, lock);
}
});
}
loop {
if *count.lock().await >= 50 {
break;
}
}
println!("Count hit 50.");
}
There are a few things of note here to pay attention to in this example.
- The mutex is wrapped in an
Arc
to allow it to be shared across threads. - Each spawned task obtains a lock and releases it on every iteration.
- Mutation of the data protected by the Mutex is done by de-referencing the obtained lock as seen on lines 12 and 19.
Tokio’s Mutex works in a simple FIFO (first in, first out) style where all calls to lock
complete in the order they were performed. In that way the Mutex is “fair” and predictable in how it distributes the locks to inner data. Locks are released and reacquired after every iteration, so basically, each thread goes to the back of the line after it increments the value once. Note that there’s some unpredictability to the timing between when the threads are started, but once they are going they alternate predictably. Finally, since there is only a single valid lock at any given time, there is no possibility of a race condition when mutating the inner value.
Note that in contrast to std::sync::Mutex
, this implementation does not poison the mutex when a thread holding the MutexGuard
panics. In such a case, the mutex will be unlocked. If the panic is caught, this might leave the data protected by the mutex in an inconsistent state.
#
ImplementationsMutex<T> where T: ?Sized,#
impl<T>new(t: T) -> Mutex<T>#
pub fnCreates a new lock in an unlocked state ready for use.
#
Examplesuse tokio::sync::Mutex;
let lock = Mutex::new(5);
const_new(t: T) -> Mutex<T>#
pub const fnCreates a new lock in an unlocked state ready for use.
#
Examplesuse tokio::sync::Mutex;
static LOCK: Mutex<i32> = Mutex::const_new(5);
lock(&'_ self) -> MutexGuard<'_, T>#
pub async fnLocks this mutex, causing the current task to yield until the lock has been acquired. When the lock has been acquired, function returns a [MutexGuard
].
#
Cancel safetyThis method uses a queue to fairly distribute locks in the order they were requested. Cancelling a call to lock
makes you lose your place in the queue.
#
Examplesuse tokio::sync::Mutex;
#[tokio::main]
async fn main() {
let mutex = Mutex::new(1);
let mut n = mutex.lock().await;
*n = 2;
}
lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>#
pub async fnLocks this mutex, causing the current task to yield until the lock has been acquired. When the lock has been acquired, this returns an [OwnedMutexGuard
].
This method is identical to Mutex::lock
, except that the returned guard references the Mutex
with an Arc
rather than by borrowing it. Therefore, the Mutex
must be wrapped in an Arc
to call this method, and the guard will live for the 'static
lifetime, as it keeps the Mutex
alive by holding an Arc
.
#
Cancel safetyThis method uses a queue to fairly distribute locks in the order they were requested. Cancelling a call to lock_owned
makes you lose your place in the queue.
#
Examplesuse tokio::sync::Mutex;
use std::sync::Arc;
#[tokio::main]
async fn main() {
let mutex = Arc::new(Mutex::new(1));
let mut n = mutex.clone().lock_owned().await;
*n = 2;
}
try_lock(&self) -> Result<MutexGuard<'_, T>, TryLockError>#
pub fnAttempts to acquire the lock, and returns TryLockError
if the lock is currently held somewhere else.
#
Examplesuse tokio::sync::Mutex;
let mutex = Mutex::new(1);
let n = mutex.try_lock()?;
assert_eq!(*n, 1);
get_mut(&mut self) -> &mutT#
pub fnReturns a mutable reference to the underlying data.
Since this call borrows the Mutex
mutably, no actual locking needs to take place – the mutable borrow statically guarantees no locks exist.
#
Examplesuse tokio::sync::Mutex;
fn main() {
let mut mutex = Mutex::new(1);
let n = mutex.get_mut();
*n = 2;
}
try_lock_owned( self: Arc<Mutex<T>> ) -> Result<OwnedMutexGuard<T>, TryLockError>#
pub fnAttempts to acquire the lock, and returns TryLockError
if the lock is currently held somewhere else.
This method is identical to Mutex::try_lock
, except that the returned guard references the Mutex
with an Arc
rather than by borrowing it. Therefore, the Mutex
must be wrapped in an Arc
to call this method, and the guard will live for the 'static
lifetime, as it keeps the Mutex
alive by holding an Arc
.
#
Examplesuse tokio::sync::Mutex;
use std::sync::Arc;
let mutex = Arc::new(Mutex::new(1));
let n = mutex.clone().try_lock_owned()?;
assert_eq!(*n, 1);
into_inner(self) -> T#
pub fnConsumes the mutex, returning the underlying data.
#
Examplesuse tokio::sync::Mutex;
#[tokio::main]
async fn main() {
let mutex = Mutex::new(1);
let n = mutex.into_inner();
assert_eq!(n, 1);
}
#
Trait ImplementationsDebug for Mutex<T> where T: Debug,#
impl<T>fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>#
pub fnFormats the value using the given formatter. Read more
Default for Mutex<T> where T: Default,#
impl<T>default() -> Mutex<T>#
pub fnReturns the “default value” for a type. Read more
From<T> for Mutex<T>#
impl<T>from(s: T) -> Mutex<T>#
pub fnPerforms the conversion.
Send for Mutex<T> where T: Send + ?Sized,#
impl<T>Sync for Mutex<T> where T: Send + ?Sized,#
impl<T>#
Auto Trait ImplementationsRefUnwindSafe for Mutex<T>#
impl<T> \!Sized> Unpin for Mutex<T> where T: Unpin,#
impl<T: ?UnwindSafe for Mutex<T>#
impl<T> \!#
Blanket ImplementationsAny for T where T: 'static + ?Sized,[src]#
impl<T>type_id(&self) -> TypeId[src]#
pub fnGets the TypeId
of self
. Read more
Borrow<T> for T where T: ?Sized,[src]#
impl<T>borrow(&self) -> &T[src]#
pub fnImmutably borrows from an owned value. Read more
BorrowMut<T> for T where T: ?Sized,[src]#
impl<T>borrow_mut(&mut self) -> &mutT[src]#
pub fnMutably borrows from an owned value. Read more
From<!> for T[src]#
impl<T>from(t: !) -> T[src]#
pub fnPerforms the conversion.
From<T> for T[src]#
impl<T>from(t: T) -> T[src]#
pub fnPerforms the conversion.
Into<U> for T where U: From<T>,[src]#
impl<T, U>into(self) -> U[src]#
pub fnPerforms the conversion.
TryFrom<U> for T where U: Into<T>,[src]#
impl<T, U>Error = Infallible#
typeThe type returned in the event of a conversion error.
try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]#
pub fnPerforms the conversion.
TryInto<U> for T where U: TryFrom<T>,[src]#
impl<T, U>Error = <U as TryFrom<T>>::Error#
typeThe type returned in the event of a conversion error.
try_into(self) -> Result<U, <U as TryFrom<T>>::Error>[src]#
pub fnPerforms the conversion.